Modeling Bond Prices In Continuous-Time Part IV - Solving For Risky Bond Discount Rate

Gary Schurman, MBE, CFA

November, 2020

In this white paper we will build a model that calculates the unknown market discount rate applicable to a risky bond with a known market value.

Our Hypothetical Problem

The table below presents our go-forward model assumptions from Part III...

Table 1: Risky Bond Assumptions

Symbol	Description	Balance
P_0	Market price at time zero	\$882.21
B	Bond face value	\$1,000.00
C	Annual coupon rate (%)	4.50
R	Recovery rate given a bond default (%)	40.00
D	Cumulative default rate (%)	5.00
S	Credit spread over the risk-free rate (%)	2.00
T	Term in years (#)	3.00

We are tasked with answering the following questions:

Question 1: What is the continuous-time discount rate applicable to this risky bond?

Question 2: What is the yield to maturity and bond equivalent yield?

Bond Price Equations From Part III

In Part III we defined the variable P_0 to be the price at time zero of a coupon paying risky bond and the variable κ to be the continuous-time discount rate. Using Table 1 above the equation for bond price at time zero is... [1]

$$P_{0} = B\left[\left(C + \lambda R\right) \int_{0}^{T} \operatorname{Exp}\left\{-\left(\kappa + \lambda\right) u\right\} \delta u + \operatorname{Exp}\left\{-\left(\kappa + \lambda\right) T\right\}\right]$$

$$\tag{1}$$

The solution to Equation (1) above is... [1]

$$P_0 = B\left[\left(C + \lambda R\right)\left(\kappa + \lambda\right)^{-1}\left(1 - \operatorname{Exp}\left\{-\left(\kappa + \lambda\right)T\right\}\right) + \operatorname{Exp}\left\{-\left(\kappa + \lambda\right)T\right\}\right]$$
 (2)

The equation for the first derivative of bond price with respect to discount rate from Part III is... [1]

$$\frac{\delta}{\delta\kappa} P_0 = B\left(\left(C + \lambda R\right) \frac{\delta}{\delta\kappa} \left(\kappa + \lambda\right)^{-1} - \left(C + \lambda R\right) \frac{\delta}{\delta\kappa} \exp\left\{-\left(\kappa + \lambda\right) T\right\} \left(\kappa + \lambda\right)^{-1} + \frac{\delta}{\delta\kappa} \exp\left\{-\left(\kappa + \lambda\right) T\right\}\right)$$
(3)

The solution to Equation (3) above from Part III is... [1]

$$\frac{\delta}{\delta\kappa}P_0 = -B\left[\left(C + \lambda R\right)\left(1 - \operatorname{Exp}\left\{-\left(\kappa + \lambda\right)T\right\}\left(1 + \left(\kappa + \lambda\right)T\right)\right)\left(\kappa + \lambda\right)^{-2} + T\operatorname{Exp}\left\{-\left(\kappa + \lambda\right)T\right\}\right]$$
(4)

Solving For The Discount Rate

We will define the variable r to be the actual discount rate (i.e. unknown to be solved for), the variable \hat{r} to be a guess discount rate, the function f(r) to be bond price at the actual discount rate (i.e. the observed bond price), the function $f(\hat{r})$ to be bond price at the guess discount rate, and the function $f'(\hat{r})$ to be the first derivative of bond price at the guess discount rate. Using these definitions we can solve for discount rate via the following Newton-Raphson method for solving nonlinear equations... [2]

$$\hat{r} + \frac{f(r) - f(\hat{r})}{f'(\hat{r})} = r + e \tag{5}$$

To solve for the actual discount rate we will come up with an initial guess rate and then iterate Equation (5) above until the error term e is zero (i.e. $r = \hat{r}$).

The Answer To Our Hypothetical Problem

Question 1: What is the continuous-time discount rate applicable to this risk-free bond?

Using Equations (2), (4) and (5) above the answer to our problem is...

Table 2: Newton-Raphson Solution

iteration	guess	f(guess)	f'(guess)	f(actual)		new guess
1	0.12000	790.30	-2166.560177	882.21	=	0.07758
2	0.07758	888.13	-2451.727344	882.21	=	0.07999
3	0.07999	882.23	-2434.511249	882.21	=	0.08000
4	0.08000	882.21	-2434.450522	882.21	=	0.08000
5	0.08000	882.21	-2434.450521	882.21	=	0.08000

The discount rate used by the market to price this bond is 8.00%. We started with a guess rate of 12.00% and the solution took less than five iterations of the Newton-Raphson method to arrive at the actual rate of 8.00%.

Question 2: What is the yield to maturity and bond equivalent yield?

Using the answer to the question above the yield to maturity for this bond is...

$$YTM = Exp \{\kappa\} - 1 = Exp \{0.08000\} - 1 = 8.33\%$$
(6)

Using Equation (6) above the bond equivalent yield for this bond is...

$$BEY = 2 \times ((1 + YTM)^{0.5} - 1) = 2 \times ((1 + 0.0833)^{0.5} - 1) = 8.16\%$$
(7)

Note: The bond pays coupon payments semi annually.

References

- [1] Gary Schurman, Modeling Bond Price in Continuous-Time Part III, November, 2020.
- [2] Gary Schurman, Newton-Raphson Method for Solving Nonlinear Equations Part I, October, 2009.